Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent
نویسندگان
چکیده
منابع مشابه
Strong Barrelledness Properties in Lebesgue-Bochner Spaces
If (Ω,Σ, μ) is a finite atomless measure space and X is a normed space, we prove that the space Lp(μ,X), 1 ≤ p ≤ ∞ is a barrelled space of class א0, regardless of the barrelledness of X. That enables us to obtain a localization theorem of certain mappings defined in Lp(μ,X). By “space” we mean a “real or complex Hausdorff locally convex space”. Given a dual pair (E,F ), as usual σ(E,F ) denotes...
متن کاملNavier-stokes Equations in the Half-space in Variable Exponent Spaces of Clifford-valued Functions
In this article, we study the steady generalized Navier-Stokes equations in a half-space in the setting of variable exponent spaces. We first establish variable exponent spaces of Clifford-valued functions in a half-space. Then, using this operator theory together with the contraction mapping principle, we obtain the existence and uniqueness of solutions to the stationary Navier-Stokes equation...
متن کاملVector-valued Inequalities on Herz Spaces and Characterizations of Herz–sobolev Spaces with Variable Exponent
The origin of Herz spaces is the study of characterization of functions and multipliers on the classical Hardy spaces ([1, 8]). By virtue of many authors’ works Herz spaces have became one of the remarkable classes of function spaces in harmonic analysis now. One of the important problems on the spaces is boundedness of sublinear operators satisfying proper conditions. Hernández, Li, Lu and Yan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2013
ISSN: 1846-579X
DOI: 10.7153/jmi-07-41